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Nearest point problems
Given a variety X C R”, and a point § € R",

min, ||x — 6||?
st. xe X

A variety is the zero set of some polynomials

X ={xeR":fi(x) =" = fn(x) =0}

Cifuentes (MIT) Stability of semidefinite relaxations ICERM'18 2/21



Nearest point problems
Given a variety X C R”, and a point § € R",

min, ||x — 6||?

st. xe X

A variety is the zero set of some polynomials

X ={xeR":fi(x) =" = fn(x) =0}

@ This problem is nonconvex, and computationally challenging.

@ SDP relaxations have been successful in several applications.

Cifuentes (MIT) Stability of semidefinite relaxations ICERM'18 2/21



|
Nearest point problems
Given a variety X C R”, and a point § € R",

min, ||x — 6||?

st. xe X

A variety is the zero set of some polynomials

X ={xeR":fi(x) =" = fn(x) =0}

@ This problem is nonconvex, and computationally challenging.

@ SDP relaxations have been successful in several applications.

Goal

Study the behavior of SDP relaxations in the low noise regime: when x is
sufficiently close to X.
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Nearest point problems

Many different applications
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Nearest point to the twisted cubic

)r;nei)r} Ix —6|>, where X :={(x1,x2,x3):% =x&, x3=x1x2}

The twisted cubic X can be parametrized as t ~ (t, t2, t3).

Its Lagrangian dual is the following SDP:

YHIOI? —61 A1—62 Aa—03

6 1-2\ —\ 0
max v, st L 1 A2 = 0.
ALA2€R A1—62 =X 1 0
TALA2 Xo—6; 0 0 1
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Nearest point problem to a quadratic variety

Theorem
If6 € X is a regular point then there is

zero-duality-gap for any 6 € R" that is
sufficiently close to 6.

Applications:
@ Triangulation problem [Aholt-Agarwal-Thomas]

@ Nearest (symmetric) rank one tensor
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]
Parametrized QCQPs

Consider a family of quadratically constrained programs (QCQPs):
min X
xERN ge( )

hy(x)=0 fori=1,....m

where gy, hg are quadratic, and the dependence on 6 is continuous.
The Lagrangian dual is an SDP.
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Parametrized QCQPs

Consider a family of quadratically constrained programs (QCQPs):

min X
x€RN ge( )

hy(x)=0 fori=1,....m

where gy, hg are quadratic, and the dependence on 6 is continuous.
The Lagrangian dual is an SDP.

Goal: Given 6 for which the SDP relaxation is tight, analyze the behavior
as 6 — 6.

Example: For a nearest point problem
go(x) == ||x — 6%, h(x) independent of #

The problem is trivial for any § € X.
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|
SDP relaxation of a (homogeneous) QCQP

Primal problem
min x| Gyx
x€RN . (Py)
xTHéx:b,- i=1,...,m
Dual problem
max d(A) := —>; A\ib;
AERM (De)
Qy(A) =0

where Qg(\) is the Hessian of the Lagrangian

Qp(\) = Gy +>_AiHj e sV
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|
SDP relaxation of a (homogeneous) QCQP

Primal problem
min x| Gyx
x€RN (Py)
xTHéx:b; i=1,...,m

Dual problem
max d(\) := =Y \ib;
AERM (De)
Qp(N) =0

Problem statement

Assume that val(P;) = val(D;), i.e., 0 is a zero-duality-gap parameter.
Find conditions under which val(Py) = val(Dy) when 6 is close to 6.
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Characterization of zero-duality-gap

Given xg primal feasible, its Lagrange multipliers are:
AE /\Q(Xg) <~ )\TVhQ(XQ) = —vgg(Xg) = Q@()\)Xg =0.

Lemma
Let xp € RN X\ € R™. Then xy is optimal to (Py) and X is optimal to (Dp)
with val(Py) = val(Dy) iff:

@ ho(xp) = 0 (primal feasibility).

@ Qy(N) > 0 (dual feasibility).

© ) € Ng(xg) (complementarity).
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AE /\Q(Xg) <~ )\Tth(Xg) = —vgg(Xg) = Q@()\)Xg =0.

Lemma
Let xp € RN X\ € R™. Then xg is optimal to (P) and X is optimal to (Dy)
with val(Py) = val(Dy) iff:

@ ho(xp) = 0 (primal feasibility).

@ Qy(N) > 0 (dual feasibility).

© ) € Ng(xg) (complementarity).

Proof.
If QQ()\)XQ =0 and hg(Xg) =0, then

0= X@TQ()(/\)XQ = XGTGQXQ + Z /\,'XQTH,'XQ = gg(Xg) — d()\)
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Characterization of zero-duality-gap

Lemma

Let @ be a zero-duality-gap parameter with (x, \) primal/dual optimal.
Assume that

@ 9j(A) has corank-one (strict-complementarity)

@ 3y feasible for (Pg), Ay € No(xg) s.t. (x9, Ag) =2 (%, ).
Then there is zero-duality-gap when 0 is close to 6.

Proof.
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OQG—

@ Qy(Ng) also has N — 1 positive eigenvalues (continuity of eigenvalues).
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Characterization of zero-duality-gap

Lemma

Let @ be a zero-duality-gap parameter with (x, \) primal/dual optimal.
Assume that

@ 9j(A) has corank-one (strict-complementarity)

@ 3y feasible for (Pg), Ay € No(xg) s.t. (x9, Ag) =2 (%, ).
Then there is zero-duality-gap when 0 is close to 6.

Proof.

e Qy(ANp) has a zero eigenvalue (Qg(Ng)xp = 0).
o Qy(Ng) = Qz()) (the dependence on @ is continuous).
o Q;()\) has N — 1 positive eigenvalues.
(

@ Qy(Ng) also has N — 1 positive eigenvalues (continuity of eigenvalues).

e Qy(Ng) = 0, so there is zero-duality-gap.
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Nearest point to a quadratic variety

mei)r} |x —0]1>, where X :={x€R":fi(x)="---=fin(x) =0}

Theorem

Let @ be a regular point of X, ie. rankVf(#) = codim X. Then there is
zero-duality-gap for 6 close to 6.
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Nearest point to a quadratic variety
mi)r} |x —0]]>, where X :={xcR":fi(x)="---
IS

Theorem

Let @ be a regular point of X, ie. rankVf () = codim X.
zero-duality-gap for 6 close to 6.

= fn(x) = 0}

Then there is

Proof.

@ Since# € X, thenx =0, and A = 0.

@ Need to find Ay € Ng(xp) s.t. Ag ﬂ 0.

@ Regularity implies || Ag|| < ﬁ“x@ — 0 920,
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Nearest point to a quadratic variety
mei)r} |x —0]1>, where X :={x€R":fi(x)="---=fin(x) =0}

Theorem

Let @ be a regular point of X, ie. rankVf(#) = codim X. Then there is
zero-duality-gap for 6 close to 6.

Proof.

@ Since# € X, thenx =0, and A = 0.

@ Need to find Ay € Ng(xp) s.t. Ag 920, 0.

e Regularity implies || Ag|| < ﬁ“x@ — 0 920,

O

v

Remark: The theorem generalizes to the case of strictly convex objective.
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Guaranteed region of zero-duality-gap

mi)r} |x —0]|2, where X:={x€cR3:x =x% x3=x1x}
Xe
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|
Application: Triangulation [Aholt-Agarwal-Thomas]

Problem

Given noisy images ii; € R? of an unknown
point,

- P P
e zj: Juj — Bl =

where U is the multiview variety of the
cameras. )
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Application: Triangulation [Aholt-Agarwal-Thomas]

Problem

Given noisy images ii; € R? of an unknown
point,

. A2 e »
Umellr.]/ EJ: || uJ - uJ ” Cl;/’:j/ N S ‘// = ;\Cz

where U is the multiview variety of the
cameras. )

o If either n =2, or n > 4 and the camera centers are not coplanar,
then U is defined by the (quadratic) epipolar constraints.
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o If either n =2, or n > 4 and the camera centers are not coplanar,
then U is defined by the (quadratic) epipolar constraints.

@ The regularity condition is easy to check.
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Application: Triangulation [Aholt-Agarwal-Thomas]

Problem
Given noisy images ii; € R? of an unknown
point,

min zj: Juj — Bl &

where U is the multiview variety of the
cameras. )

o If either n =2, or n > 4 and the camera centers are not coplanar,
then U is defined by the (quadratic) epipolar constraints.

@ The regularity condition is easy to check.
@ Under Jow noise the SDP relaxation is tight.

Cifuentes (MIT) Stability of semidefinite relaxations ICERM'18 12 /21



Application: Rank one approximation

Problem

Given a tensor X € R™M>* XN consider
min  |lx — X2
xeX

where X is the variety of rank one
tensors (Segre).
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Problem

Given a tensor X € R™M>* XN consider

min  |lx — X2
xeX

where X is the variety of rank one
tensors (Segre).

@ The Segre variety is defined by quadratics (2 x 2 minors).

@ Thus, the SDP relaxation is tight under low noise.
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Application: Rotation synchronization

Problem

Given a graph G = (V, E) and matrices
R; € R9*4 for jj € E,

min
Ri,...,Rn€SO(d)

> IR — RyRill
ijcE
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Application: Rotation synchronization

Problem , s
. . - T
Given a graph G = (V, E) and matrices i o o /f\\_ \
Rj € RI*9 for jj € E, f_,avf:.___'f,q;
' SO IR — RyRi|2 i el
min - — RiR; h
Ri,...,R€SO(d) 2 E ’ vE 'I \"iji P 4
e ) -‘_ .-.‘-_ __"xlh/;

@ The objective function is strictly convex.
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Application: Rotation synchronization

Problem

Given a graph G =

(V, E) and matrices
R; € R9*9 for jj € E

min
Ri,...,Rn€SO(d)

>l Ri = RjRilZ

jeE

@ The objective function is strictly convex

@ Thus, the SDP relaxation is tight under low noise
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Application: Rotation synchronization

Problem

Given a graph G = (V, E) and matrices
R; € R9*4 for jj € E,

Ry,...,R,€SO(d)

> IR — RyRill
ijcE

@ The objective function is strictly convex.

@ Thus, the SDP relaxation is tight under low noise.

e Similar tightness results have been shown [Fredriksson-Olsson],
[Rosen-Carlone-Bandeira-Leonard], [Wang-Singer].
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Application: Orthogonal Procrustes

Problem

Given matrices A € R™M*" B ¢ RMx*m2,
C c Rkaz]

min  ||AXC — B||*
XeSt(n,k)

where St(n, k) is the Stiefel manifold.

@ The objective function is strictly convex.

@ Thus, the SDP relaxation is tight under low noise.
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-
Nearest point to non-quadratic varieties

Any variety can be described by quadratics by using auxiliary variables.

Example: Nearest point problem to the curve y2 = y3 can be written as

- 2 _ 2 2
yeﬂ@"geR ly 0I5, st y2=y1z, y1=2°, y2z=yi.

The objective is not strict convex.

20 -2
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Stability of SDP relaxations of (arbitrary) QCQPs

Consider a general family of QCQPs:

min  ga(x)
x€RN ' (Py)
hy(x)=0 fori=1,...,m

Let 0 be a zero-duality-gap parameter: val(P;) = val(Dy).
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e
Stability of SDP relaxations of (arbitrary) QCQPs

Consider a general family of QCQPs:

min X
min & (x) P
hy(x) =0 fori=1,....m
Let 0 be a zero-duality-gap parameter: val(P;) = val(Dy).
@ There are bad cases, where the SDP relaxation is non-informative.

@ We introduce a "Slater-type"” condition that guarantees
zero-duality-gap nearby 6.
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]
Stability of SDP relaxations of QCQPs

Let @ be a zero-duality-gap parameter with (x, \) primal/dual optimal.
Assumption (restricted Slater)

There is 1 € R™ s.t. the quadratic function ¥, (x) := Z,-u,-h(’;—(x) satisfies:
VWV, (%) =0, and W, is strictly convex on ker Qz().

.

Theorem

Under the restricted Slater assumption and some regularity conditions,

there is zero-duality-gap when @ is close to . Moreover, the SDP recovers
the minimizer.

v
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Theorem
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there is zero-duality-gap when @ is close to . Moreover, the SDP recovers
the minimizer.

v

Applications (ongoing):
@ Higher levels of SOS/Lasserre hierarchy.

@ For instance: system identification, noisy deconvolution, camera
resectioning, homography estimation, approximate GCD.
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Using geometry to derive smaller SDP relaxations

Primal problem

min  x' Gx
xeX

X={x:x"Hx=b;fori=1,...,m}

Dual problem

max — > Aib;
AERM, QeSN e

Q:G+ZI>\,HI
Q=0
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Using geometry to derive smaller SDP relaxations
Primal problem
min  x' Gx
xeX
X={x:x"Hx=b;fori=1,...,m}

Dual problem
Let X1,--- ,Xs € X

maxXx — Z /\,'b,'
AER™, QSN !

57Q% = %7 G& + 3 N&THS  forj=1,...,5
Q=0

Cifuentes (MIT) Stability of semidefinite relaxations ICERM'18 19 /21



Using geometry to derive smaller SDP relaxations
Primal problem
min  x' Gx
xeX
X={x:x"Hx=b;fori=1,...,m}

Dual problem
Let X1,--- ,Xs € X

maxXx — Z /\;b;
AER™M, QeSN !

3T Q% =37 G+ by forj=1,....S
Q>0

Cifuentes (MIT) Stability of semidefinite relaxations ICERM'18 19 /21



Using geometry to derive smaller SDP relaxations
Primal problem
min  x' Gx
xeX
X={x:x"Hx=b;fori=1,...,m}

Dual problem
Let X1,--- ,Xs € X

max —
~vER,QeSN
TQ%=%"Gx+~v forj=1,...,S
Vi Vi Vi Wi '7 ./ 3ty
Q=0

@ SDP is smaller, e.g., the multipliers A € R™ disappear.
@ relaxation is stronger.
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Example: Orthogonal Procrustes

Problem

Given matrices A € R™Mm*n B ¢ RMmxmz2,

Ce RkaQ,

min
XeSt(n,k

llaxc - B

where St(n, k) is the Stiefel manifold.

Equations SDP Grobner Sampling SDP
" Tl variables  constraints time(s) || basis (s) || variables constraints time(s)
5 3 682 233 0.65 0.03 137 130 0.11
6 4 1970 576 1.18 9.94 326 315 0.14
7 5 4727 1207 3.56 - 667 651 0.24
8 6 9954 2255 13.88 - 1226 1204 0.45
9 7 19028 3873 42.14 - 2081 2052 1.10
10 8 33762 6238 124.43 - 3322 3285 2.48
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Summary

@ We analyzed the local stability of SDP relaxations.
e Found sufficient conditions for zero-duality-gap nearby 6.

e Many applications (triangulation, rank one approximation, rotation
synchronization, orthogonal Procrustes).
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If you want to know more:
@ D. Cifuentes, S. Agarwal, P. Parrilo, R. Thomas, On the local stability of semidefinite
relaxations, arXiv:1710.04287.

@ D. Cifuentes, C. Harris, B. Sturmfels, The geometry of SDP-exactness in quadratic
optimization, arXiv:1804.01796.

@ D. Cifuentes, P. Parrilo, Sampling algebraic varieties for sum of squares programs,
arXiv:1511.06751.

Thanks for your attention!
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