On the local stability of semidefinite relaxations

Diego Cifuentes

Department of Mathematics Massachusetts Institute of Technology

Joint work with Sameer Agarwal (Google), Pablo Parrilo (MIT), Rekha Thomas (U. Washington). arXiv:1710.04287

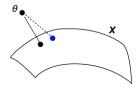
Real Algebraic Geometry and Optimization - ICERM - 2018

Given a variety $X \subset \mathbb{R}^n$, and a point $\theta \in \mathbb{R}^n$,

$$\min_{x} \quad \|x - \theta\|^{2} \\ \text{s.t.} \quad x \in X$$

A variety is the zero set of some polynomials

$$X:=\{x\in\mathbb{R}^n:f_1(x)=\cdots=f_m(x)=0\}$$

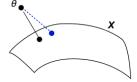


Given a variety $X \subset \mathbb{R}^n$, and a point $\theta \in \mathbb{R}^n$,

$$\min_{x} \quad \|x - \theta\|^{2} \\ \text{s.t.} \quad x \in X$$

A variety is the zero set of some polynomials

$$X:=\{x\in\mathbb{R}^n:f_1(x)=\cdots=f_m(x)=0\}$$



- This problem is *nonconvex*, and computationally challenging.
- SDP relaxations have been successful in several applications.

Given a variety $X \subset \mathbb{R}^n$, and a point $\theta \in \mathbb{R}^n$,

$$\min_{x} \quad \|x - \theta\|^{2} \\ \text{s.t.} \quad x \in X$$

A variety is the zero set of some polynomials

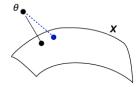
$$X:=\{x\in\mathbb{R}^n:f_1(x)=\cdots=f_m(x)=0\}$$

- This problem is *nonconvex*, and computationally challenging.
- SDP relaxations have been successful in several applications.

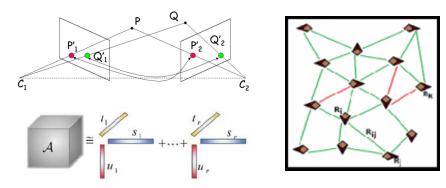
Goal

Cifuentes (MIT)

Study the behavior of SDP relaxations in the *low noise* regime: when x is sufficiently close to X.



Many different applications



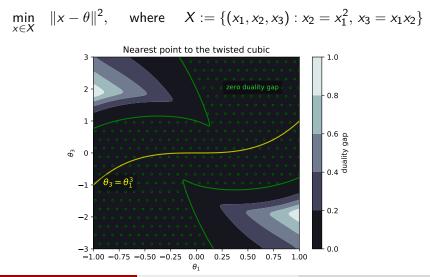
Nearest point to the twisted cubic

$$\min_{x \in X} \quad \|x - \theta\|^2, \quad \text{where} \quad X := \{(x_1, x_2, x_3) : x_2 = x_1^2, x_3 = x_1 x_2\}$$

The twisted cubic X can be parametrized as $t \mapsto (t, t^2, t^3)$. Its Lagrangian dual is the following SDP:

$$\max_{\gamma,\lambda_1,\lambda_2\in\mathbb{R}} \quad \gamma, \quad \text{ s.t. } \quad \begin{pmatrix} \gamma + \|\theta\|^2 & -\theta_1 & \lambda_1 - \theta_2 & \lambda_2 - \theta_3 \\ -\theta_1 & 1 - 2\lambda_1 & -\lambda_2 & 0 \\ \lambda_1 - \theta_2 & -\lambda_2 & 1 & 0 \\ \lambda_2 - \theta_3 & 0 & 0 & 1 \end{pmatrix} \succeq \mathbf{0}.$$

Nearest point to the twisted cubic



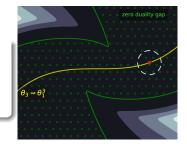
Cifuentes (MIT)

Stability of semidefinite relaxations

Nearest point problem to a quadratic variety

Theorem

If $\overline{\theta} \in X$ is a regular point then there is zero-duality-gap for any $\theta \in \mathbb{R}^n$ that is sufficiently close to $\overline{\theta}$.



Applications:

- Triangulation problem [Aholt-Agarwal-Thomas]
- Nearest (symmetric) rank one tensor

Parametrized QCQPs

Consider a family of *quadratically constrained programs* (QCQPs):

$$\min_{x \in \mathbb{R}^N} \quad g_{ heta}(x) \ h^i_{ heta}(x) = 0 \quad ext{ for } i = 1, \dots, m$$
 $(P_{ heta})$

where g_{θ} , h_{θ}^{i} are *quadratic*, and the dependence on θ is *continuous*. The Lagrangian dual is an SDP.

Parametrized QCQPs

Consider a family of *quadratically constrained programs* (QCQPs):

$$\min_{x \in \mathbb{R}^N} \quad g_{\theta}(x) \ h^i_{ heta}(x) = 0 \quad ext{ for } i = 1, \dots, m$$
 $(P_{ heta})$

where g_{θ} , h_{θ}^{i} are *quadratic*, and the dependence on θ is *continuous*. The Lagrangian dual is an SDP.

Goal: Given $\bar{\theta}$ for which the SDP relaxation is tight, analyze the behavior as $\theta \to \bar{\theta}$.

Parametrized QCQPs

Consider a family of *quadratically constrained programs* (QCQPs):

$$egin{aligned} \min_{x\in\mathbb{R}^N} & g_ heta(x) \ & & h^i_ heta(x)=0 & ext{ for } i=1,\ldots,m \end{aligned}$$

where g_{θ} , h_{θ}^{i} are *quadratic*, and the dependence on θ is *continuous*. The Lagrangian dual is an SDP.

Goal: Given $\bar{\theta}$ for which the SDP relaxation is tight, analyze the behavior as $\theta \to \bar{\theta}$.

Example: For a nearest point problem

$$g_{ heta}(x) := \|x - \theta\|^2, \qquad h^i(x) ext{ independent of } heta$$

The problem is trivial for any $\bar{\theta} \in X$.

SDP relaxation of a (homogeneous) QCQP

Primal problem

$$\min_{x \in \mathbb{R}^N} \begin{array}{l} x^T G_{\theta} x \\ x^T H_{\theta}^i x = b_i \quad i = 1, \dots, m \end{array}$$

$$(P_{\theta})$$

Dual problem

$$egin{aligned} \max & d(\lambda) := -\sum_i \lambda_i b_i \ & \mathcal{Q}_{ heta}(\lambda) \succeq 0 \end{aligned}$$

where $\mathcal{Q}_{\theta}(\lambda)$ is the Hessian of the Lagrangian

$$\mathcal{Q}_{ heta}(\lambda) := \mathcal{G}_{ heta} + \sum_{i} \lambda_{i} \mathcal{H}_{ heta}^{i} \in \mathbb{S}^{N}.$$

SDP relaxation of a (homogeneous) QCQP

Primal problem

$$\min_{x \in \mathbb{R}^N} \quad x^T G_{\theta} x$$

$$x^T H_{\theta}^i x = b_i \quad i = 1, \dots, m$$

$$(P_{\theta})$$

Dual problem

$$egin{aligned} \max & d(\lambda) := -\sum_i \lambda_i b_i \ & \mathcal{Q}_{ heta}(\lambda) \succeq 0 \end{aligned}$$

Problem statement

Assume that val $(P_{\bar{\theta}}) = val(D_{\bar{\theta}})$, i.e., $\bar{\theta}$ is a *zero-duality-gap* parameter. Find conditions under which val $(P_{\theta}) = val(D_{\theta})$ when θ is close to $\bar{\theta}$.

Given x_{θ} primal feasible, its Lagrange multipliers are:

 $\lambda \in \Lambda_{\theta}(x_{\theta}) \iff \lambda^{T} \nabla h_{\theta}(x_{\theta}) = -\nabla g_{\theta}(x_{\theta}) \iff \mathcal{Q}_{\theta}(\lambda) x_{\theta} = 0.$

Lemma

Let $x_{\theta} \in \mathbb{R}^{N}$, $\lambda \in \mathbb{R}^{m}$. Then x_{θ} is optimal to (P_{θ}) and λ is optimal to (D_{θ}) with $val(P_{\theta}) = val(D_{\theta})$ iff:

- $h_{\theta}(x_{\theta}) = 0$ (primal feasibility).
- **2** $Q_{\theta}(\lambda) \succeq 0$ (dual feasibility).
- **3** $\lambda \in \Lambda_{\theta}(x_{\theta})$ (complementarity).

Given x_{θ} primal feasible, its *Lagrange multipliers* are:

 $\lambda \in \Lambda_{\theta}(x_{\theta}) \iff \lambda^{T} \nabla h_{\theta}(x_{\theta}) = -\nabla g_{\theta}(x_{\theta}) \iff \mathcal{Q}_{\theta}(\lambda) x_{\theta} = 0.$

Lemma

Let $x_{\theta} \in \mathbb{R}^{N}$, $\lambda \in \mathbb{R}^{m}$. Then x_{θ} is optimal to (P_{θ}) and λ is optimal to (D_{θ}) with $val(P_{\theta}) = val(D_{\theta})$ iff:

- $h_{\theta}(x_{\theta}) = 0$ (primal feasibility).
- **2** $Q_{\theta}(\lambda) \succeq 0$ (dual feasibility).
- **3** $\lambda \in \Lambda_{\theta}(x_{\theta})$ (complementarity).

If
$$\mathcal{Q}_{ heta}(\lambda)x_{ heta}=0$$
 and $h_{ heta}(x_{ heta})=0$, then

$$0 = x_{\theta}^{T} \mathcal{Q}_{\theta}(\lambda) x_{\theta} = x_{\theta}^{T} G_{\theta} x_{\theta} + \sum_{i} \lambda_{i} x_{\theta}^{T} H_{i} x_{\theta} = g_{\theta}(x_{\theta}) - d(\lambda).$$

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

0 $Q_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)

Then there is zero-duality-gap when θ is close to $\overline{\theta}$.

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **9** $Q_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)

Then there is zero-duality-gap when θ is close to $\overline{\theta}$.

Proof.

• $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta} = 0)$.

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **0** $Q_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)
- **2** $\exists x_{\theta} \text{ feasible for } (P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta}) \text{ s.t. } (x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \theta} (\bar{x}, \bar{\lambda}).$

Then there is zero-duality-gap when θ is close to $\overline{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta} = 0)$.
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) \to \mathcal{Q}_{\overline{\theta}}(\overline{\lambda})$ (the dependence on θ is continuous).

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **9** $Q_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)
- $\exists x_{\theta} \text{ feasible for } (P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta}) \text{ s.t. } (x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \bar{\theta}} (\bar{x}, \bar{\lambda}).$

Then there is zero-duality-gap when θ is close to $\overline{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta} = 0)$.
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) \to \mathcal{Q}_{\overline{\theta}}(\overline{\lambda})$ (the dependence on θ is continuous).
- $\mathcal{Q}_{\bar{\theta}}(\bar{\lambda})$ has N-1 positive eigenvalues.

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **0** $Q_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)
- $\exists x_{\theta} \text{ feasible for } (P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta}) \text{ s.t. } (x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \theta} (\bar{x}, \bar{\lambda}).$

Then there is zero-duality-gap when θ is close to $\overline{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta} = 0)$.
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) \to \mathcal{Q}_{\overline{\theta}}(\overline{\lambda})$ (the dependence on θ is continuous).
- $\mathcal{Q}_{\bar{\theta}}(\bar{\lambda})$ has N-1 positive eigenvalues.
- $Q_{\theta}(\lambda_{\theta})$ also has N-1 positive eigenvalues (continuity of eigenvalues).

Lemma

Let $\bar{\theta}$ be a zero-duality-gap parameter with $(\bar{x}, \bar{\lambda})$ primal/dual optimal. Assume that

- **9** $Q_{\bar{\theta}}(\bar{\lambda})$ has corank-one (strict-complementarity)
- $\exists x_{\theta} \text{ feasible for } (P_{\theta}), \lambda_{\theta} \in \Lambda_{\theta}(x_{\theta}) \text{ s.t. } (x_{\theta}, \lambda_{\theta}) \xrightarrow{\theta \to \theta} (\bar{x}, \bar{\lambda}).$

Then there is zero-duality-gap when θ is close to $\overline{\theta}$.

- $Q_{\theta}(\lambda_{\theta})$ has a zero eigenvalue $(Q_{\theta}(\lambda_{\theta})x_{\theta} = 0)$.
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) \to \mathcal{Q}_{\overline{\theta}}(\overline{\lambda})$ (the dependence on θ is continuous).
- $\mathcal{Q}_{\overline{\theta}}(\overline{\lambda})$ has N-1 positive eigenvalues.
- $Q_{\theta}(\lambda_{\theta})$ also has N-1 positive eigenvalues (continuity of eigenvalues).
- $\mathcal{Q}_{\theta}(\lambda_{\theta}) \succeq 0$, so there is zero-duality-gap.

Nearest point to a quadratic variety

$$\min_{x\in X} \quad \|x-\theta\|^2, \quad \text{where} \quad X := \{x\in \mathbb{R}^n : f_1(x) = \cdots = f_m(x) = 0\}$$

Theorem

Let $\overline{\theta}$ be a regular point of X, i.e. rank $\nabla f(\overline{\theta}) = \operatorname{codim} X$. Then there is zero-duality-gap for θ close to $\overline{\theta}$.

Nearest point to a quadratic variety

$$\min_{x\in X} \quad \|x-\theta\|^2, \quad \text{where} \quad X := \{x\in \mathbb{R}^n : f_1(x) = \cdots = f_m(x) = 0\}$$

Theorem

Let $\overline{\theta}$ be a regular point of X, i.e. rank $\nabla f(\overline{\theta}) = \operatorname{codim} X$. Then there is zero-duality-gap for θ close to $\overline{\theta}$.

• Since
$$ar{ heta} \in X$$
, then $ar{x} = ar{ heta}$, and $ar{\lambda} = 0$.

• Need to find
$$\lambda_{\theta} \in \Lambda_{\theta}(x_{\theta})$$
 s.t. $\lambda_{\theta} \xrightarrow{\theta \to \overline{\theta}} 0$.

• Regularity implies
$$\|\lambda_{\theta}\| \leq \frac{2}{\sigma(\nabla f)} \|x_{\theta} - \theta\| \xrightarrow{\theta \to \theta} 0.$$

Nearest point to a quadratic variety

$$\min_{x\in X} \quad \|x-\theta\|^2, \quad \text{where} \quad X := \{x\in \mathbb{R}^n : f_1(x) = \cdots = f_m(x) = 0\}$$

Theorem

Let $\overline{\theta}$ be a regular point of X, i.e. rank $\nabla f(\overline{\theta}) = \operatorname{codim} X$. Then there is zero-duality-gap for θ close to $\overline{\theta}$.

Proof.

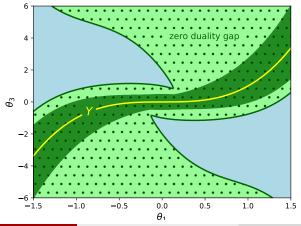
• Since
$$ar{ heta} \in X$$
, then $ar{x} = ar{ heta}$, and $ar{\lambda} = 0$.

- Need to find $\lambda_{\theta} \in \Lambda_{\theta}(x_{\theta})$ s.t. $\lambda_{\theta} \xrightarrow{\theta \to \overline{\theta}} 0$.
- Regularity implies $\|\lambda_{\theta}\| \leq \frac{2}{\sigma(\nabla f)} \|x_{\theta} \theta\| \xrightarrow{\theta \to \theta} 0.$

Remark: The theorem generalizes to the case of strictly convex objective.

Guaranteed region of zero-duality-gap

$$\min_{x \in X} \|x - \theta\|^2, \quad \text{where} \quad X := \{x \in \mathbb{R}^3 : x_2 = x_1^2, \, x_3 = x_1 x_2\}$$



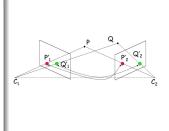
Cifuentes (MIT)

Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u\in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.

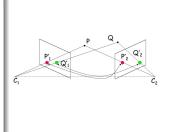


Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u\in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.



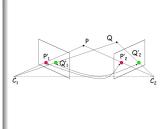
 If either n = 2, or n ≥ 4 and the camera centers are not coplanar, then U is defined by the (quadratic) epipolar constraints.

Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u\in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.



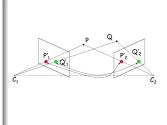
- If either n = 2, or n ≥ 4 and the camera centers are not coplanar, then U is defined by the (quadratic) epipolar constraints.
- The regularity condition is easy to check.

Problem

Given noisy images $\hat{u}_j \in \mathbb{R}^2$ of an unknown point,

$$\min_{u \in U} \quad \sum_{j} \|u_j - \hat{u}_j\|^2$$

where U is the *multiview variety* of the cameras.



- If either n = 2, or n ≥ 4 and the camera centers are not coplanar, then U is defined by the (quadratic) epipolar constraints.
- The regularity condition is easy to check.
- Under *low noise* the SDP relaxation is tight.

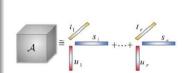
Application: Rank one approximation

Problem

Given a *tensor* $\hat{x} \in \mathbb{R}^{n_1 \times \cdots \times n_\ell}$, consider

$$\min_{x \in X} \|x - \hat{x}\|^2$$

where X is the variety of rank one tensors (Segre).



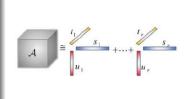
Application: Rank one approximation

Problem

Given a *tensor* $\hat{x} \in \mathbb{R}^{n_1 \times \cdots \times n_\ell}$, consider

$$\min_{x \in X} \|x - \hat{x}\|^2$$

where X is the variety of rank one tensors (Segre).



• The Segre variety is defined by quadratics $(2 \times 2 \text{ minors})$.

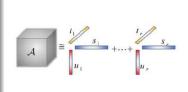
Application: Rank one approximation

Problem

Given a *tensor* $\hat{x} \in \mathbb{R}^{n_1 \times \cdots \times n_\ell}$, consider

$$\min_{x \in X} \|x - \hat{x}\|^2$$

where X is the variety of rank one tensors (Segre).

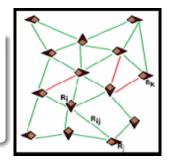


- The Segre variety is defined by quadratics $(2 \times 2 \text{ minors})$.
- Thus, the SDP relaxation is tight under low noise.

Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

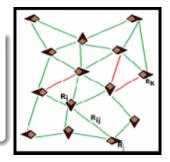
$$\min_{R_1,...,R_n \in SO(d)} \sum_{ij \in E} \|R_j - \hat{R}_{ij}R_i\|_F^2$$



Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

$$\min_{R_1,...,R_n \in SO(d)} \sum_{ij \in E} \|R_j - \hat{R}_{ij}R_i\|_F^2$$

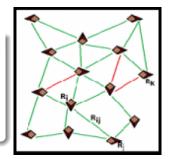


• The objective function is strictly convex.

Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

$$\min_{R_1,\ldots,R_n\in SO(d)} \sum_{ij\in E} \|R_j - \hat{R}_{ij}R_i\|_F^2$$

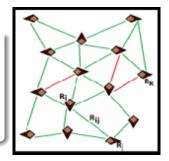


- The objective function is strictly convex.
- Thus, the SDP relaxation is tight under low noise.

Problem

Given a graph G = (V, E) and matrices $\hat{R}_{ij} \in \mathbb{R}^{d \times d}$ for $ij \in E$,

$$\min_{R_1,\ldots,R_n\in SO(d)} \sum_{ij\in E} \|R_j - \hat{R}_{ij}R_i\|_F^2$$



- The objective function is strictly convex.
- Thus, the SDP relaxation is tight under low noise.
- Similar tightness results have been shown [Fredriksson-Olsson], [Rosen-Carlone-Bandeira-Leonard], [Wang-Singer].

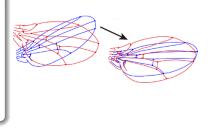
Application: Orthogonal Procrustes

Problem

Given matrices $A \in \mathbb{R}^{m_1 imes n}$, $B \in \mathbb{R}^{m_1 imes m_2}$, $C \in \mathbb{R}^{k imes m_2}$,

$$\min_{X\in St(n,k)} \|AXC - B\|_F^2$$

where St(n, k) is the Stiefel manifold.



- The objective function is strictly convex.
- Thus, the SDP relaxation is tight under low noise.

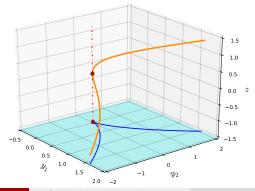
Nearest point to non-quadratic varieties

Any variety can be described by quadratics by using *auxiliary* variables.

Example: Nearest point problem to the curve $y_2^2 = y_1^3$ can be written as

 $\min_{y \in \mathbb{R}^2, z \in \mathbb{R}} \|y - \theta\|^2, \quad \text{s.t.} \quad y_2 = y_1 z, \quad y_1 = \overline{z^2}, \quad y_2 z = y_1^2.$

The objective is not strict convex.



Cifuentes (MIT)

Stability of semidefinite relaxations

Stability of SDP relaxations of (arbitrary) QCQPs

Consider a general family of QCQPs:

$$egin{aligned} \min_{x\in\mathbb{R}^N} & g_ heta(x) \ & h^i_ heta(x) = 0 & ext{ for } i=1,\ldots,m \end{aligned}$$

Let $\overline{\theta}$ be a zero-duality-gap parameter: $val(P_{\overline{\theta}}) = val(D_{\overline{\theta}})$.

 (P_{θ})

Stability of SDP relaxations of (arbitrary) QCQPs

Consider a general family of QCQPs:

$$egin{aligned} \min_{x\in\mathbb{R}^N} & g_ heta(x) \ & h^i_ heta(x) = 0 & ext{ for } i = 1,\ldots,m \end{aligned}$$

Let $\overline{\theta}$ be a zero-duality-gap parameter: $val(P_{\overline{\theta}}) = val(D_{\overline{\theta}})$.

• There are bad cases, where the SDP relaxation is non-informative.

Stability of SDP relaxations of (arbitrary) QCQPs

Consider a general family of QCQPs:

$$egin{aligned} \min_{x\in\mathbb{R}^N} & g_ heta(x) \ & h^i_ heta(x) = 0 & ext{ for } i=1,\ldots,m \end{aligned}$$

Let $\overline{\theta}$ be a zero-duality-gap parameter: $val(P_{\overline{\theta}}) = val(D_{\overline{\theta}})$.

- There are bad cases, where the SDP relaxation is non-informative.
- We introduce a "Slater-type" condition that guarantees zero-duality-gap nearby θ

Stability of SDP relaxations of QCQPs

Let $\bar{\theta}$ be a zero-duality-gap parameter with ($\bar{x},\bar{\lambda})$ primal/dual optimal.

Assumption (restricted Slater)

There is $\mu \in \mathbb{R}^m$ s.t. the quadratic function $\Psi_{\mu}(x) := \sum_i \mu_i h_{\bar{\theta}}^i(x)$ satisfies: $\nabla \Psi_{\mu}(\bar{x}) = 0$, and Ψ_{μ} is strictly convex on ker $Q_{\bar{\theta}}(\bar{\lambda})$.

Theorem

Under the restricted Slater assumption and some regularity conditions, there is zero-duality-gap when θ is close to $\overline{\theta}$. Moreover, the SDP recovers the minimizer.

Stability of SDP relaxations of QCQPs

Let $\bar{\theta}$ be a zero-duality-gap parameter with ($\bar{x},\bar{\lambda})$ primal/dual optimal.

Assumption (restricted Slater)

There is $\mu \in \mathbb{R}^m$ s.t. the quadratic function $\Psi_{\mu}(x) := \sum_i \mu_i h_{\bar{\theta}}^i(x)$ satisfies: $\nabla \Psi_{\mu}(\bar{x}) = 0$, and Ψ_{μ} is strictly convex on ker $Q_{\bar{\theta}}(\bar{\lambda})$.

Theorem

Under the restricted Slater assumption and some regularity conditions, there is zero-duality-gap when θ is close to $\overline{\theta}$. Moreover, the SDP recovers the minimizer.

Applications (ongoing):

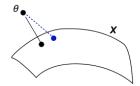
- Higher levels of SOS/Lasserre hierarchy.
- For instance: system identification, noisy deconvolution, camera resectioning, homography estimation, approximate GCD.

Cifuentes (MIT)

Stability of semidefinite relaxations

Primal problem

$$\min_{x \in X} x^T G x$$
$$X = \{x : x^T H^i x = b_i \text{ for } i = 1, \dots, m\}$$

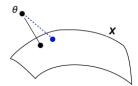


Dual problem

$$egin{aligned} \max & & -\sum_i \lambda_i b_i \ & \lambda \in \mathbb{R}^m, Q \in \mathbb{S}^N \end{aligned} \ & Q &= G + \sum_i \lambda_i H^i \ & Q \succeq 0 \end{aligned}$$

Primal problem

$$\min_{x \in X} x^T G x$$
$$X = \{x : x^T H^i x = b_i \text{ for } i = 1, \dots, m\}$$



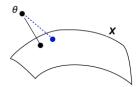
Dual problem

Let $\hat{x}_1, \cdots, \hat{x}_S \in X$

$$\begin{array}{ll} \max_{\lambda \in \mathbb{R}^{m}, Q \in \mathbb{S}^{N}} & -\sum_{i} \lambda_{i} b_{i} \\ \hat{x}_{j}^{T} Q \hat{x}_{j} = \hat{x}_{j}^{T} G \hat{x}_{j} + \sum_{i} \lambda_{i} \hat{x}_{j}^{T} H^{i} \hat{x}_{j} & \text{for } j = 1, \dots, S \\ Q \succeq 0 \end{array}$$

Primal problem

$$\min_{x \in X} x^T G x$$
$$X = \{x : x^T H^i x = b_i \text{ for } i = 1, \dots, m\}$$



Dual problem

Let $\hat{x}_1, \cdots, \hat{x}_S \in X$

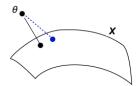
$$\max_{\lambda \in \mathbb{R}^{m}, Q \in \mathbb{S}^{N}} \quad -\sum_{i} \lambda_{i} b_{i}$$

$$\hat{x}_{j}^{T} Q \hat{x}_{j} = \hat{x}_{j}^{T} G \hat{x}_{j} + \sum_{i} \lambda_{i} b_{i} \quad \text{ for } j = 1, \dots, S$$

$$Q \succeq 0$$

Primal problem

$$\min_{x \in X} x^T G x$$
$$X = \{x : x^T H^i x = b_i \text{ for } i = 1, \dots, m\}$$



Dual problem

Let $\hat{x}_1, \cdots, \hat{x}_S \in X$

$$\begin{array}{ll} \max_{\gamma \in \mathbb{R}, Q \in \mathbb{S}^N} & -\gamma \\ \hat{x}_j^T Q \hat{x}_j = \hat{x}_j^T G \hat{x}_j + \gamma & \text{ for } j = 1, \dots, S \\ & Q \succeq 0 \end{array}$$

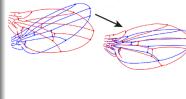
- SDP is smaller, e.g., the multipliers $\lambda \in \mathbb{R}^m$ disappear.
- relaxation is stronger.

Example: Orthogonal Procrustes

Problem

Given matrices $A \in \mathbb{R}^{m_1 imes n}$, $B \in \mathbb{R}^{m_1 imes m_2}$, $C \in \mathbb{R}^{k imes m_2}$,

$$\min_{X\in St(n,k)} \|AXC - B\|_F^2$$



where St(n, k) is the Stiefel manifold.

n	r	E variables	Equations SDP constraints	time(s)	Gröbner basis (<i>s</i>)	yariables	Sampling SDP constraints	time(s)
5	3	682	233	0.65	0.03	137	130	0.11
6	4	1970	576	1.18	9.94	326	315	0.14
7	5	4727	1207	3.56	-	667	651	0.24
8	6	9954	2255	13.88	-	1226	1204	0.45
9	7	19028	3873	42.14	-	2081	2052	1.10
10	8	33762	6238	124.43	-	3322	3285	2.48

- We analyzed the local stability of SDP relaxations.
- Found sufficient conditions for zero-duality-gap nearby $\bar{\theta}$.
- Many applications (triangulation, rank one approximation, rotation synchronization, orthogonal Procrustes).

- We analyzed the local stability of SDP relaxations.
- Found sufficient conditions for zero-duality-gap nearby $\bar{\theta}$.
- Many applications (triangulation, rank one approximation, rotation synchronization, orthogonal Procrustes).

If you want to know more:

- D. Cifuentes, S. Agarwal, P. Parrilo, R. Thomas, On the local stability of semidefinite relaxations, arXiv:1710.04287.
- D. Cifuentes, C. Harris, B. Sturmfels, The geometry of SDP-exactness in quadratic optimization, arXiv:1804.01796.
- D. Cifuentes, P. Parrilo, Sampling algebraic varieties for sum of squares programs, arXiv:1511.06751.

Thanks for your attention!