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Nearest point problems
Given a variety X ⊂ Rn, and a point θ ∈ Rn,

minx ‖x − θ‖2

s.t. x ∈ X

A variety is the zero set of some polynomials

X := {x ∈ Rn : f1(x) = · · · = fm(x) = 0}

This problem is nonconvex, and computationally challenging.
SDP relaxations have been successful in several applications.

Goal
Study the behavior of SDP relaxations in the low noise regime: when x is
sufficiently close to X .
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Nearest point problems

Many different applications
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Nearest point to the twisted cubic

min
x∈X

‖x − θ‖2, where X := {(x1, x2, x3) : x2 = x2
1 , x3 = x1x2}

The twisted cubic X can be parametrized as t 7→ (t, t2, t3).

Its Lagrangian dual is the following SDP:

max
γ,λ1,λ2∈R

γ, s.t.

 γ+‖θ‖2 −θ1 λ1−θ2 λ2−θ3
−θ1 1−2λ1 −λ2 0
λ1−θ2 −λ2 1 0
λ2−θ3 0 0 1

 � 0.
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Nearest point problem to a quadratic variety

Theorem
If θ̄ ∈ X is a regular point then there is
zero-duality-gap for any θ ∈ Rn that is
sufficiently close to θ̄.

Applications:
Triangulation problem [Aholt-Agarwal-Thomas]
Nearest (symmetric) rank one tensor
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Parametrized QCQPs

Consider a family of quadratically constrained programs (QCQPs):

min
x∈RN

gθ(x)

hi
θ(x) = 0 for i = 1, . . . ,m

(Pθ)

where gθ, hi
θ are quadratic, and the dependence on θ is continuous.

The Lagrangian dual is an SDP.

Goal: Given θ̄ for which the SDP relaxation is tight, analyze the behavior
as θ → θ̄.

Example: For a nearest point problem

gθ(x) := ‖x − θ‖2, hi (x) independent of θ

The problem is trivial for any θ̄ ∈ X .

Cifuentes (MIT) Stability of semidefinite relaxations ICERM’18 6 / 21



Parametrized QCQPs

Consider a family of quadratically constrained programs (QCQPs):

min
x∈RN

gθ(x)

hi
θ(x) = 0 for i = 1, . . . ,m

(Pθ)

where gθ, hi
θ are quadratic, and the dependence on θ is continuous.

The Lagrangian dual is an SDP.

Goal: Given θ̄ for which the SDP relaxation is tight, analyze the behavior
as θ → θ̄.

Example: For a nearest point problem

gθ(x) := ‖x − θ‖2, hi (x) independent of θ

The problem is trivial for any θ̄ ∈ X .

Cifuentes (MIT) Stability of semidefinite relaxations ICERM’18 6 / 21



Parametrized QCQPs

Consider a family of quadratically constrained programs (QCQPs):

min
x∈RN

gθ(x)

hi
θ(x) = 0 for i = 1, . . . ,m

(Pθ)

where gθ, hi
θ are quadratic, and the dependence on θ is continuous.

The Lagrangian dual is an SDP.

Goal: Given θ̄ for which the SDP relaxation is tight, analyze the behavior
as θ → θ̄.

Example: For a nearest point problem

gθ(x) := ‖x − θ‖2, hi (x) independent of θ

The problem is trivial for any θ̄ ∈ X .

Cifuentes (MIT) Stability of semidefinite relaxations ICERM’18 6 / 21



SDP relaxation of a (homogeneous) QCQP

Primal problem
min

x∈RN
xT Gθx

xT H i
θx = bi i = 1, . . . ,m

(Pθ)

Dual problem
max
λ∈Rm

d(λ) := −
∑

i λi bi

Qθ(λ) � 0
(Dθ)

where Qθ(λ) is the Hessian of the Lagrangian

Qθ(λ) := Gθ +
∑

i
λi H i

θ ∈ SN .
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xT H i
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(Pθ)

Dual problem
max
λ∈Rm

d(λ) := −
∑

i λi bi

Qθ(λ) � 0
(Dθ)

Problem statement
Assume that val(Pθ̄) = val(Dθ̄), i.e., θ̄ is a zero-duality-gap parameter.
Find conditions under which val(Pθ) = val(Dθ) when θ is close to θ̄.
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Characterization of zero-duality-gap
Given xθ primal feasible, its Lagrange multipliers are:

λ ∈ Λθ(xθ) ⇐⇒ λT∇hθ(xθ) = −∇gθ(xθ) ⇐⇒ Qθ(λ)xθ = 0.

Lemma

Let xθ ∈ RN , λ ∈ Rm. Then xθ is optimal to (Pθ) and λ is optimal to (Dθ)
with val(Pθ) = val(Dθ) iff:

1 hθ(xθ) = 0 (primal feasibility).
2 Qθ(λ) � 0 (dual feasibility).
3 λ ∈ Λθ(xθ) (complementarity).

Proof.
If Qθ(λ)xθ = 0 and hθ(xθ) = 0, then

0 = xT
θ Qθ(λ)xθ = xT

θ Gθxθ +
∑

i
λi xT

θ Hi xθ = gθ(xθ)− d(λ).
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Characterization of zero-duality-gap

Lemma

Let θ̄ be a zero-duality-gap parameter with (x̄ , λ̄) primal/dual optimal.
Assume that

1 Qθ̄(λ̄) has corank-one (strict-complementarity)

2 ∃xθ feasible for (Pθ), λθ ∈ Λθ(xθ) s.t. (xθ, λθ) θ→θ̄−−−→ (x̄ , λ̄).
Then there is zero-duality-gap when θ is close to θ̄.

Proof.

Qθ(λθ) has a zero eigenvalue (Qθ(λθ)xθ = 0).
Qθ(λθ)→ Qθ̄(λ̄) (the dependence on θ is continuous).
Qθ̄(λ̄) has N − 1 positive eigenvalues.
Qθ(λθ) also has N−1 positive eigenvalues (continuity of eigenvalues).
Qθ(λθ) � 0, so there is zero-duality-gap.
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Nearest point to a quadratic variety

min
x∈X

‖x − θ‖2, where X := {x ∈ Rn : f1(x) = · · · = fm(x) = 0}

Theorem
Let θ̄ be a regular point of X, i.e. rank∇f (θ̄) = codim X. Then there is
zero-duality-gap for θ close to θ̄.

Proof.
Since θ̄ ∈ X , then x̄ = θ̄, and λ̄ = 0.

Need to find λθ ∈ Λθ(xθ) s.t. λθ
θ→θ̄−−−→ 0.

Regularity implies ‖λθ‖ ≤ 2
σ(∇f )‖xθ − θ‖

θ→θ̄−−−→ 0.

Remark: The theorem generalizes to the case of strictly convex objective.
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Guaranteed region of zero-duality-gap

min
x∈X

‖x − θ‖2, where X := {x ∈ R3 : x2 = x2
1 , x3 = x1x2}
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Application: Triangulation [Aholt-Agarwal-Thomas]

Problem
Given noisy images ûj ∈ R2 of an unknown
point,

min
u∈U

∑
j
‖uj − ûj‖2

where U is the multiview variety of the
cameras.

If either n = 2, or n ≥ 4 and the camera centers are not coplanar,
then U is defined by the (quadratic) epipolar constraints.
The regularity condition is easy to check.
Under low noise the SDP relaxation is tight.
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Application: Rank one approximation

Problem
Given a tensor x̂ ∈ Rn1×···×n` , consider

min
x∈X

‖x − x̂‖2

where X is the variety of rank one
tensors (Segre).

The Segre variety is defined by quadratics (2× 2 minors).
Thus, the SDP relaxation is tight under low noise.
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Application: Rotation synchronization

Problem
Given a graph G = (V ,E ) and matrices
R̂ij ∈ Rd×d for ij ∈ E ,

min
R1,...,Rn∈SO(d)

∑
ij∈E
‖Rj − R̂ijRi‖2

F

The objective function is strictly convex.
Thus, the SDP relaxation is tight under low noise.
Similar tightness results have been shown [Fredriksson-Olsson],
[Rosen-Carlone-Bandeira-Leonard], [Wang-Singer].
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Application: Orthogonal Procrustes

Problem
Given matrices A ∈ Rm1×n, B ∈ Rm1×m2 ,
C ∈ Rk×m2 ,

min
X∈St(n,k)

‖AXC − B‖2
F

where St(n, k) is the Stiefel manifold.

The objective function is strictly convex.
Thus, the SDP relaxation is tight under low noise.
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Nearest point to non-quadratic varieties
Any variety can be described by quadratics by using auxiliary variables.

Example: Nearest point problem to the curve y2
2 = y3

1 can be written as
min

y∈R2,z∈R
‖y − θ‖2, s.t. y2 = y1z , y1 = z2, y2z = y2

1 .

The objective is not strict convex.
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Stability of SDP relaxations of (arbitrary) QCQPs

Consider a general family of QCQPs:

min
x∈RN

gθ(x)

hi
θ(x) = 0 for i = 1, . . . ,m

(Pθ)

Let θ̄ be a zero-duality-gap parameter: val(Pθ̄) = val(Dθ̄).

There are bad cases, where the SDP relaxation is non-informative.
We introduce a “Slater-type” condition that guarantees
zero-duality-gap nearby θ̄.
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Stability of SDP relaxations of QCQPs

Let θ̄ be a zero-duality-gap parameter with (x̄ , λ̄) primal/dual optimal.

Assumption (restricted Slater)
There is µ ∈ Rm s.t. the quadratic function Ψµ(x) :=

∑
i µi hi

θ̄
(x) satisfies:

∇Ψµ(x̄) = 0, and Ψµ is strictly convex on kerQθ̄(λ̄).

Theorem
Under the restricted Slater assumption and some regularity conditions,
there is zero-duality-gap when θ is close to θ̄. Moreover, the SDP recovers
the minimizer.

Applications (ongoing):
Higher levels of SOS/Lasserre hierarchy.
For instance: system identification, noisy deconvolution, camera
resectioning, homography estimation, approximate GCD.
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Using geometry to derive smaller SDP relaxations

Primal problem

min
x∈X

xT Gx

X = {x : xT H i x = bi for i = 1, . . . ,m}

Dual problem
max

λ∈Rm,Q∈SN
−

∑
i λi bi

Q = G +
∑

i λi H i

Q � 0
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Using geometry to derive smaller SDP relaxations

Primal problem

min
x∈X

xT Gx

X = {x : xT H i x = bi for i = 1, . . . ,m}

Dual problem
Let x̂1, · · · , x̂S ∈ X

max
γ∈R,Q∈SN

− γ

x̂T
j Qx̂j = x̂T

j Gx̂j + γ for j = 1, . . . ,S
Q � 0

SDP is smaller, e.g., the multipliers λ ∈ Rm disappear.
relaxation is stronger.
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Example: Orthogonal Procrustes

Problem
Given matrices A ∈ Rm1×n, B ∈ Rm1×m2 ,
C ∈ Rk×m2 ,

min
X∈St(n,k)

‖AXC − B‖2
F

where St(n, k) is the Stiefel manifold.

n r Equations SDP Gröbner Sampling SDP
variables constraints time(s) basis (s) variables constraints time(s)

5 3 682 233 0.65 0.03 137 130 0.11
6 4 1970 576 1.18 9.94 326 315 0.14
7 5 4727 1207 3.56 - 667 651 0.24
8 6 9954 2255 13.88 - 1226 1204 0.45
9 7 19028 3873 42.14 - 2081 2052 1.10

10 8 33762 6238 124.43 - 3322 3285 2.48
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Summary

We analyzed the local stability of SDP relaxations.
Found sufficient conditions for zero-duality-gap nearby θ̄.
Many applications (triangulation, rank one approximation, rotation
synchronization, orthogonal Procrustes).

If you want to know more:
D. Cifuentes, S. Agarwal, P. Parrilo, R. Thomas, On the local stability of semidefinite
relaxations, arXiv:1710.04287.
D. Cifuentes, C. Harris, B. Sturmfels, The geometry of SDP-exactness in quadratic
optimization, arXiv:1804.01796.
D. Cifuentes, P. Parrilo, Sampling algebraic varieties for sum of squares programs,
arXiv:1511.06751.

Thanks for your attention!
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